PARAMETRIC METHOD OF SOLVING HEAT-TRANSFER
PROBLEMS WITH-LIQUID FILM FLOW
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The authors describe a method of calculating the convective heat transfer in a flowing film of
viscous liquid.

Most heat-transfer problems with film flow reduce to the study of thin films (h < L) of a viscous in-
compressible liquid flowing freely over a heated surface. The liquid motion is considered to be hydrodyna-
mically stable, which a constant film thickness. In spite of the different ways of assigning heat-transfer con-
ditions on the free film surface and the heated surface, the heat transfer in this case is accomplished by con-
duction [1]. .

In this paper we consider laminar wave-free motion of a liquid film, accounting for inertia forces and
convective heat transfer; we neglect the influence of capillary forces. As boundary conditions for the heat
transfer we assume that the temperatures of the film surface and of the solid heated surface are arbitrary
functions of the longitudinal coordinate, either given or determined later from the heat-transfer conditions.
The motion and convective heat transfer in thin liquid films are usually described in the boundary-layer ap-
proximation, i.e., by equations of parabolic type. The difference from the boundary-layer equations is that
neither the velocity distribution at the outer edge nor the film thickness is known. The conservation of the
mean specific flow rate in the liquid film is an additional relation for calculating the unknown film thickness.
The proposed solution of problems of motion and heat transfer in film flow is based on the parametric simi-
larity method, suggested by L. G. Loitsyanskii in boundary-layer theory [2]. The parametric method assumes
the introduction of a number of dimensionless groups (parameters) describing the different conditions of mo-
tion and heat transfer (e.g., the influence of inertia forces, that the heated surface is not isothermal, ete.).
According to the general ideas of the method, the parameters are taken as new independent variables, and the
equations of motion and heat transfer in thin liquid films are written in "universal” form. The solutions of
these equations, which are independent of the specific features of the problems, can be obtained once and for
all and tabulated as functions of the parameters introduced. Depending on the specific conditions of the flow
processes the parameters can have different values, but the distributions of velocity and temperature in the
nymiversal” form will be unique for a wide class of film flow problems.

The steady-state equations of motion and convective heat transfer of a thin liquid film, written in terms
of a stream function ¥, have the form:
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In these variables Egs. (1) and boundary conditions (2) take the form
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which we take as the new independent variables. In {3] we described the construction of recurrence relations
for the parameters and a detailed transition in Eq. (3) from the {x; nt space to the {fK, YK YK nt parameter
space. The general form of Eq. (3) with boundary conditions in universal form will be as follows:
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where A =gh®/Q; L = [(K~-1) fifg +fK+] o/8fKs Ly = [(K—DifK + fg]Pr 8/0fg + (KEfRPT + vy — Yr¥y +
YKyi) o/8vK + (REYKPY + YK+ — YKY1) 8/8YK: ‘the subscript K indicates summation; the points denote differ-
entiation with respect to 7. The value of A(fi) is determined from the fourth supplementary condition @ (1) = 1.

The solution of the universal equations (5) can be obtained only with a finite number of parameters, i.e.,
in parametric approximations. The simplest for integration are local similarity approximations in which par-
tial derivatives with respect to the parameters are discarded. By considering different groups of parameters,
one can analyze the influence of various factors on the nature of the motion and the heat transfer in the liquid
films. For instance, the parameters fx account for the influence of inertia forces and determine the change
in film thickness along x due to their influence, and the parameters v and ¥ account for the influence of
temperatures on the outer film boundary and of the solid heated surface on the heat transfer. We call the fol-
lowing equations the one-parameter approximation to the equation of motion and the locally-one-parameter
approximation to the heat-transfer equation in the parameters f;, vy, ¥4
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The system of equationg (6) for the dimensionless stream and temperature functions @ and © were integrated
numerically on an ES-1033 computer. The derivatives in the equations were replaced by their finite-difference
relations. For the equation of motion the boundary problem reduced to a Cauchy problem which was solved by
a fourth-order Runge —Kufta method. The heat-transfer equation was solved by a marching method. The re-
sult was dimensionless profiles of velocity and temperature, the function A, and the specific heat fluxes for
various values of the parameters f;, v;, ¥;. Figure 1 shows some results of the numerical integration of the
universal equations (6). In particular, it shows curves of the universal functions A as a function of the values
f, and the specific heat flux to the heated surface ®(0) for various values of f;, v;, Y. For—20< f; < 4 one
can approximate to A(f;) satisfactorily by linear function. Then the equation for determining the wnknown film
thickness acquires the form, convenient for integration
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From the solutions of the wniversal equations (6) obtained, one can evaluate all the characteristics of
the heat-transfer process: the heat flux at the outer edge of the film, the heat flux fo the heated surface, and
the average temperatures over sections. We now examine one of the basic characteristics of the process, the
heat-transfer coefficient to a flowing liquid film, defined to be
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The results of the calculations showed that the influence of the parameter £; on the heat transfer is negligible, -
and appears only as a change of the thickness of the film. Thus, the heat-transier process in the liquid film is
less sensitive to deformation of the velocity profile due to inertia forces than are the hydrodynamic character-
istics of the flow. The heat transfer in liquid film flow is mainly influenced by the nature of the temperature
variation of the temperature of the heated surface and the free film surface. For values of the parameters

l'Yﬂ < 1.5, ¥4 < 1.5 the results of the heat-transfer coefficient calculations are approximated satisfactorily
by the formula, convenient for practical calculations
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where «, =X/h is the heat transfer coefficient for hydrodynamically stabilized flow of a film constant tem-
peratures Tyy and Tg. In each specific case the parameters v, and ¥; are determined from the temperatures
at the outer edge of the film and on the heated surface from the heat-transfer conditions.

Putting Tg = const (¥4 = 0), we now analyze the influence of the heated surface not being isothermal on
the heat transfer to the liquid film. For example, positive temperature gradients of the heated surface (v;>0)
lead to an increase in the heat-transfer intensity compared with isothermal flow, while negative gradients
(y; < 0) lead to reduced intensity. For a specific value of the parameter y; deformations of the temperature
profile lead to a change of the direction of the specific flux, analogously to heat transfer in a boundary layer
[4]. The greatest increase of heat-transfer intensity will be observed for positive gradients at the outer
boundary of the film (¥, > 0), i.e., at a maximum value of the temperature head.

NOTATION

h, film thickness; L, characteristic linear dimension; x, y, Cartesian coordinates; T, temperature;
g, acceleration due to gravity; v, coefficient of kinematic viscosity; a, thermal diffusivity; A, thermal con-
ductivity; Q,, specific volume flow rate; Pr, Prandfl number.
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